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Disclaimers

I tend to speak fast

I may have an accent

Thursday, October 11, 12



(def speaker {
  :name "raju",

    :pronunciation "/raa-jew/",
    :description ["java/ruby developer",
                "technophile",
                "language geek"],
    :profiles {:twitter "looselytyped"
             :facebook "raju.gandhi"}})
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About us...

Small consulting/training/mentoring shop

Based out of Ohio and Arizona

Specialize in open-source technologies - 
Java/Ruby/Rails/Groovy/Grails
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Lisp on the JVM

Dynamic

Excellent concurrency support

Strong Java inter-op

Lazy*

Clojure?
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Clojure Syntax

A whirlwind tour

Thursday, October 11, 12



Clojure Syntax

;lists - these are special
'(+ 1 2 1/3)
;a comment
["this" "is" "a" "vector"]
;commas are whitespace
{:yes true, :no false, :null nil}
;sets
#{\a \e \i \o \u} 
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LISt Processing

;can be a regular function
;Yes! + is a function :)
(+ 1 2 3)
;or a macro
(defn say-hello [name]
  (str "Hello, " name))
;or a special form
(if (< x 3) "less than 3" "or not")

Thursday, October 11, 12



LISt Processing

;can be a regular function
;Yes! + is a function :)
(+ 1 2 3)
;or a macro
(defn say-hello [name]
  (str "Hello, " name))
;or a special form
(if (< x 3) "less than 3" "or not")

Thursday, October 11, 12



LISt Processing

;can be a regular function
;Yes! + is a function :)
(+ 1 2 3)
;or a macro
(defn say-hello [name]
  (str "Hello, " name))
;or a special form
(if (< x 3) "less than 3" "or not")

Thursday, October 11, 12



LISt Processing

;can be a regular function
;Yes! + is a function :)
(+ 1 2 3)
;or a macro
(defn say-hello [name]
  (str "Hello, " name))
;or a special form
(if (< x 3) "less than 3" "or not")

Thursday, October 11, 12



LISt Processing

;can be a regular function
;Yes! + is a function :)
(+ 1 2 3)
;or a macro
(defn say-hello [name]
  (str "Hello, " name))
;or a special form
(if (< x 3) "less than 3" "or not")

Thursday, October 11, 12



LISt Processing

;can be a regular function
;Yes! + is a function :)
(+ 1 2 3)
;or a macro
(defn say-hello [name]
  (str "Hello, " name))
;or a special form
(if (< x 3) "less than 3" "or not")

Thursday, October 11, 12



LISt Processing

;can be a regular function
;Yes! + is a function :)
(+ 1 2 3)
;or a macro
(defn say-hello [name]
  (str "Hello, " name))
;or a special form
(if (< x 3) "less than 3" "or not")

Thursday, October 11, 12



Homoiconicity

;defining a function
(defn say-hello [name]
  (str "Hello, " name))
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Homoiconicity

code == data
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What is FP?

What is OOP???

Functional programming 

Functions are first class citizens
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Why FP?

Compartmentalize

Better re-use

Referential Transparency

Easier to test

Easier to parallelize

Thursday, October 11, 12



Clojure’s Approach

Side effects are explicit

State manipulation via

Persistent data-structures

Multiple reference types with 
appropriate semantics
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Declaring Functions

;explicit definition
(defn times-2
  "Multiplies its arg by 2"
  [n] 
  (* 2 n))
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Declaring Functions

;alternate approach
;no docs though
(def times-2 
     (fn [n] (* 2 n)))
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Declaring Functions

;anonymous function
(map #(* 2 %) [1 2 3])
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Consuming Functions

;map takes ([f coll] ...)
(map times-2 [1 2 3])
;> (2 4 6)

Thursday, October 11, 12



Consuming Functions

;map takes ([f coll] ...)
(map #(* 2 %) [1 2 3])
;> (2 4 6)

Thursday, October 11, 12



Consuming Functions

;reduce takes ([f coll] ...)
(reduce + [1 2 3])
;> 6
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Functions Everywhere

([4 5 6] 0)
;> 4
(#{\a \e \i \o \u} \a)
;> \a
({:yes true, :no false, :null nil} :yes)
;> true
(:yes {:yes true, :no false, :null nil})
;> true
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Manipulating Data

(def lst ‘(1 2 3 4))
(first lst)
; 1
(second lst)
; 2
(nth lst 2)
; 3
(last lst)
; 4
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Manipulating Data

; (def lst ‘(1 2 3 4))
(list 
  (first lst) 
  (second lst) 
  (nth lst 2) 
  5 
  (last lst))

; (1 2 3 5 4)
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Manipulating Code As Data

(+ 1 2)
; 3
‘(+ 1 2)
; (+ 1 2)
(eval ‘(+ 1 2))
; 3
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(defn say-hello
  [name] 
  (str “Hello ” name))
; #'user/say-hello
(say-hello “Raju”)
; “Hello Raju”

Manipulating Code As Data
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‘(defn say-hello
  [name] 
  (str “Hello ” name))
; (defn say-hello [name] (str "Hello " name))
(eval *1)
; #'user/say-hello
(*1 “Raju”)
; “Hello Raju”

Manipulating Code As Data
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(def lst ‘(defn say-hello
  [name] 
  (str “Hello ” name)))
; #'user/lst
(first lst)
; defn
(second lst)
; say-hello
(nth lst 2)
; [name]
(last lst)
; (str "Hello " name)

Manipulating Code As Data
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;(def lst ‘(defn say-hello
  [name] 
  (str “Hello ” name)))
(def logged-say-hello 
  (apply list 
         (first lst) 
         (second lst) 
         (nth f lst) 
         (list 
           '(println "Args: " name) 
           (last lst))))
; #'user/logged-say-hello

logged-say-hello
(defn say-hello [name] (println "Arg: " name) (str "Hello " 
name))

Manipulating Code As Data
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; logged-say-hello
; (defn say-hello [name] (println "Arg: " name) (str "Hello 
" name))

(eval logged-say-hello)
; #'user/say-hello
(say-hello "Catherine")
; Args:  Catherine
; "Hello Catherine"

Manipulating Code As Data
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(defmacro log-it [fn-name args & body]
  `(defn ~fn-name ~args
     (println "Args are: " ~args)
     ~@body))

(log-it say-hello [name]
        (str "Hello " name))
; #'user/say-hello

(say-hello "Raju")
; Args are:  [Raju]
; "Hello Raju"

Macros
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Lots More

Immutable/Persistent data structures

Reference types for concurrency

Refs

Agents

Atoms

...
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References

Clojure Home

ClojureDocs

Books

Clojure Programming

The Joy Of Clojure

Functional Programming for the 
Object-Oriented Programmer *
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Thanks!
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