
Finding Clojure
Raju Gandhi

Thursday, October 11, 12

Disclaimers

I tend to speak fast

I may have an accent

Thursday, October 11, 12

(def speaker {
 :name "raju",

 :pronunciation "/raa-jew/",
 :description ["java/ruby developer",
 "technophile",
 "language geek"],
 :profiles {:twitter "looselytyped"
 :facebook "raju.gandhi"}})

Thursday, October 11, 12

About us...

Small consulting/training/mentoring shop

Based out of Ohio and Arizona

Specialize in open-source technologies -
Java/Ruby/Rails/Groovy/Grails

Thursday, October 11, 12

Lisp on the JVM

Dynamic

Excellent concurrency support

Strong Java inter-op

Lazy*

Clojure?

Thursday, October 11, 12

Clojure Syntax

A whirlwind tour

Thursday, October 11, 12

Clojure Syntax

;lists - these are special
'(+ 1 2 1/3)
;a comment
["this" "is" "a" "vector"]
;commas are whitespace
{:yes true, :no false, :null nil}
;sets
#{\a \e \i \o \u}

Thursday, October 11, 12

Clojure Syntax

;lists - these are special
'(+ 1 2 1/3)
;a comment
["this" "is" "a" "vector"]
;commas are whitespace
{:yes true, :no false, :null nil}
;sets
#{\a \e \i \o \u}

Thursday, October 11, 12

Clojure Syntax

;lists - these are special
'(+ 1 2 1/3)
;a comment
["this" "is" "a" "vector"]
;commas are whitespace
{:yes true, :no false, :null nil}
;sets
#{\a \e \i \o \u}

Thursday, October 11, 12

Clojure Syntax

;lists - these are special
'(+ 1 2 1/3)
;a comment
["this" "is" "a" "vector"]
;commas are whitespace
{:yes true, :no false, :null nil}
;sets
#{\a \e \i \o \u}

Thursday, October 11, 12

Clojure Syntax

;lists - these are special
'(+ 1 2 1/3)
;a comment
["this" "is" "a" "vector"]
;commas are whitespace
{:yes true, :no false, :null nil}
;sets
#{\a \e \i \o \u}

Thursday, October 11, 12

LISt Processing

;can be a regular function
;Yes! + is a function :)
(+ 1 2 3)
;or a macro
(defn say-hello [name]
 (str "Hello, " name))
;or a special form
(if (< x 3) "less than 3" "or not")

Thursday, October 11, 12

LISt Processing

;can be a regular function
;Yes! + is a function :)
(+ 1 2 3)
;or a macro
(defn say-hello [name]
 (str "Hello, " name))
;or a special form
(if (< x 3) "less than 3" "or not")

Thursday, October 11, 12

LISt Processing

;can be a regular function
;Yes! + is a function :)
(+ 1 2 3)
;or a macro
(defn say-hello [name]
 (str "Hello, " name))
;or a special form
(if (< x 3) "less than 3" "or not")

Thursday, October 11, 12

LISt Processing

;can be a regular function
;Yes! + is a function :)
(+ 1 2 3)
;or a macro
(defn say-hello [name]
 (str "Hello, " name))
;or a special form
(if (< x 3) "less than 3" "or not")

Thursday, October 11, 12

LISt Processing

;can be a regular function
;Yes! + is a function :)
(+ 1 2 3)
;or a macro
(defn say-hello [name]
 (str "Hello, " name))
;or a special form
(if (< x 3) "less than 3" "or not")

Thursday, October 11, 12

LISt Processing

;can be a regular function
;Yes! + is a function :)
(+ 1 2 3)
;or a macro
(defn say-hello [name]
 (str "Hello, " name))
;or a special form
(if (< x 3) "less than 3" "or not")

Thursday, October 11, 12

LISt Processing

;can be a regular function
;Yes! + is a function :)
(+ 1 2 3)
;or a macro
(defn say-hello [name]
 (str "Hello, " name))
;or a special form
(if (< x 3) "less than 3" "or not")

Thursday, October 11, 12

Homoiconicity

;defining a function
(defn say-hello [name]
 (str "Hello, " name))

Thursday, October 11, 12

Homoiconicity

;defining a function
(defn say-hello [name]
 (str "Hello, " name))

Thursday, October 11, 12

Homoiconicity

;defining a function
(defn say-hello [name]
 (str "Hello, " name))

Thursday, October 11, 12

Homoiconicity

;defining a function
(defn say-hello [name]
 (str "Hello, " name))

Thursday, October 11, 12

Homoiconicity

code == data

Thursday, October 11, 12

What is FP?

What is OOP???

Functional programming

Functions are first class citizens

Thursday, October 11, 12

Why FP?

Compartmentalize

Better re-use

Referential Transparency

Easier to test

Easier to parallelize

Thursday, October 11, 12

Clojure’s Approach

Side effects are explicit

State manipulation via

Persistent data-structures

Multiple reference types with
appropriate semantics

Thursday, October 11, 12

Declaring Functions

;explicit definition
(defn times-2
 "Multiplies its arg by 2"
 [n]
 (* 2 n))

Thursday, October 11, 12

Declaring Functions

;alternate approach
;no docs though
(def times-2
 (fn [n] (* 2 n)))

Thursday, October 11, 12

Declaring Functions

;anonymous function
(map #(* 2 %) [1 2 3])

Thursday, October 11, 12

Declaring Functions

;anonymous function
(map #(* 2 %) [1 2 3])

Thursday, October 11, 12

Consuming Functions

;map takes ([f coll] ...)
(map times-2 [1 2 3])
;> (2 4 6)

Thursday, October 11, 12

Consuming Functions

;map takes ([f coll] ...)
(map #(* 2 %) [1 2 3])
;> (2 4 6)

Thursday, October 11, 12

Consuming Functions

;reduce takes ([f coll] ...)
(reduce + [1 2 3])
;> 6

Thursday, October 11, 12

Functions Everywhere

([4 5 6] 0)
;> 4
(#{\a \e \i \o \u} \a)
;> \a
({:yes true, :no false, :null nil} :yes)
;> true
(:yes {:yes true, :no false, :null nil})
;> true

Thursday, October 11, 12

Manipulating Data

(def lst ‘(1 2 3 4))
(first lst)
; 1
(second lst)
; 2
(nth lst 2)
; 3
(last lst)
; 4

Thursday, October 11, 12

Manipulating Data

; (def lst ‘(1 2 3 4))
(list
 (first lst)
 (second lst)
 (nth lst 2)
 5
 (last lst))

; (1 2 3 5 4)

Thursday, October 11, 12

Manipulating Code As Data

(+ 1 2)
; 3
‘(+ 1 2)
; (+ 1 2)
(eval ‘(+ 1 2))
; 3

Thursday, October 11, 12

(defn say-hello
 [name]
 (str “Hello ” name))
; #'user/say-hello
(say-hello “Raju”)
; “Hello Raju”

Manipulating Code As Data

Thursday, October 11, 12

‘(defn say-hello
 [name]
 (str “Hello ” name))
; (defn say-hello [name] (str "Hello " name))
(eval *1)
; #'user/say-hello
(*1 “Raju”)
; “Hello Raju”

Manipulating Code As Data

Thursday, October 11, 12

(def lst ‘(defn say-hello
 [name]
 (str “Hello ” name)))
; #'user/lst
(first lst)
; defn
(second lst)
; say-hello
(nth lst 2)
; [name]
(last lst)
; (str "Hello " name)

Manipulating Code As Data

Thursday, October 11, 12

;(def lst ‘(defn say-hello
 [name]
 (str “Hello ” name)))
(def logged-say-hello
 (apply list
 (first lst)
 (second lst)
 (nth f lst)
 (list
 '(println "Args: " name)
 (last lst))))
; #'user/logged-say-hello

logged-say-hello
(defn say-hello [name] (println "Arg: " name) (str "Hello "
name))

Manipulating Code As Data

Thursday, October 11, 12

; logged-say-hello
; (defn say-hello [name] (println "Arg: " name) (str "Hello
" name))

(eval logged-say-hello)
; #'user/say-hello
(say-hello "Catherine")
; Args: Catherine
; "Hello Catherine"

Manipulating Code As Data

Thursday, October 11, 12

(defmacro log-it [fn-name args & body]
 `(defn ~fn-name ~args
 (println "Args are: " ~args)
 ~@body))

(log-it say-hello [name]
 (str "Hello " name))
; #'user/say-hello

(say-hello "Raju")
; Args are: [Raju]
; "Hello Raju"

Macros

Thursday, October 11, 12

Lots More

Immutable/Persistent data structures

Reference types for concurrency

Refs

Agents

Atoms

...

Thursday, October 11, 12

References

Clojure Home

ClojureDocs

Books

Clojure Programming

The Joy Of Clojure

Functional Programming for the
Object-Oriented Programmer *

Thursday, October 11, 12

http://clojure.org/
http://clojure.org/
http://clojuredocs.org/
http://clojuredocs.org/
http://www.amazon.com/Clojure-Programming-Chas-Emerick/dp/1449394701
http://www.amazon.com/Clojure-Programming-Chas-Emerick/dp/1449394701
http://www.amazon.com/The-Joy-Clojure-Thinking-Way/dp/1935182641
http://www.amazon.com/The-Joy-Clojure-Thinking-Way/dp/1935182641
https://leanpub.com/fp-oo
https://leanpub.com/fp-oo
https://leanpub.com/fp-oo
https://leanpub.com/fp-oo

Thanks!

Thursday, October 11, 12

